
Adaptive throttling of Tor clients by entry guards

Roger Dingledine
arma@torproject.org

Tor Tech Report 2010-09-001
September 19, 2010

Abstract

Looking for a paper topic (or a thesis topic)? Here’s a Tor research area that needs more
attention. The short version is: if we prevent the really loud users from using too much of
the Tor network, how much can it help?

We’ve instrumented Tor’s entry relays so they can rate-limit connections from users,
and we’ve instrumented the directory authorities so they can change the rate-limiting
parameters globally across the network. Which parameter values improve performance
for the Tor network as a whole? How should relays adapt their rate-limiting parameters
based on their capacity and based on the network load they see, and what rate-limiting
algorithms will work best?

We’d love to work with you to help answer these questions.

One of the reasons why Tor is slow is that some people use it for file-sharing or other
high-volume transfers. That means if you want to get your instant message cell through, it
sometimes needs to wait in line behind a pile of other cells—leading to high latency and, maybe
even worse, highly variable latency.

One way to improve the situation is Can and Goldberg’s “An Improved Algorithm for Tor
Circuit Scheduling” [2], which was integrated into Tor as of 0.2.2.11-alpha. The idea is to track
how many cells the relay has handled for each circuit lately, and give priority to cells from
quieter circuits.

But while that puts some cells in front of others, it can only work so many miracles: if many
cells have been placed in front of your cell it still has to wait, and the more overall load there is
in the network, the more often that will happen.

Which leads to the research problem: if we work to keep the really loud flows off the
network in the first place, how much can it help?

Tor 0.2.2.15-alpha lets you set the PerConnBWRate and PerConnBWBurst config options in
your relay, to use token buckets1 to rate limit connections from non-relays. Tor 0.2.2.16-alpha
added the capability for the directory authorities to broadcast network-wide token bucket

1https://en.wikipedia.org/wiki/Token_bucket

1

https://en.wikipedia.org/wiki/Token_bucket


Figure 1: Influence of PerConnBW* settings on user-perceived Tor performance over time

parameters, so we can change how much throttling there is and then observe the results on the
network.

So the first question is to model how this should work to improve performance at a single
entry guard. Say we do periodic performance tests fetching files of size 50KB, 1MB, and
5MB using that relay as our first hop, and say the relay sets PerConnBWRate to 5KB/s and
PerConnBWBurst to 2MB. That is, bursts of up to 2 megabytes on the connection are unthrottled,
but after that it’s squeezed to a long-term average of 5 kilobytes per second, until the flow lets
up at which point the allowed burst slowly builds back up to 2MB. We would expect the 5MB
tests to show horrible performance, since they’ll need at least 3000/5= 600 seconds to fetch
the last 3MB of the file. We would expect the 50KB and 1MB tests to look better, though: if
we’re squeezing out the really big flows, there’s more space for what’s left.

We actually performed this experiment, using Sebastian’s relay fluxe3. You can see his
performance graphs over time in Figure 1. The black dots are individual fetches, the y axis is
how many seconds it took to fetch the file, and the x axis is time (the green-shaded areas are
when the feature is turned on). Don’t pay too much attention to the blue smoothing line; it’s
probably not matching the actual distribution well.

Figure 2 has the cumulative distribution functions for the same data. The performance
gets significantly better both for the 50KB and the 1MB downloads, and as expected gets
significantly worse for the 5MB downloads.

So far so good; we’ve done the proof of concept, and now we need a research group to step
in, make it rigorous, and help tackle the real research questions.

The next question is: how well does this trick work under various conditions? It would
seem that if there’s plenty of spare bandwidth on the relay, it should have little effect. If we
choose parameters that are too lenient, it also would have little effect. But choosing parameters
that are too low will hurt normal web browsing users too. Are there rate and burst values

2



Figure 2: Empirical cumulative distribution functions of the influence of PerConnBW* settings
on user-perceived Tor performance

that would cleanly separate web browsers from bulk downloaders? Will certain relays (that is,
relays with certain characteristics) provide clearer performance improvements than others?

How often is it the case, for various relay capacities and various user loads, that at least
one connection is being throttled? The CDFs appear to show improved performance spread out
pretty evenly relative to download time. What statistics should we make relays track over time
so we can get a better intuition about the load they’re really seeing?

Now is where it gets tricky. If we’re only thinking about one relay turning on this feature in
a vacuum, then if that relay has enough capacity to handle all its flows, it should—no sense
slowing down anybody if you can handle all the traffic. But instead think of the entire Tor
network as a system: your Tor requests might also slow down because a loud Tor flow entered
at some other relay and is colliding with yours somewhere along the path. So there’s a reason
to squeeze incoming connections even if you have enough capacity to handle them: to reduce
the effects of bottlenecks elsewhere in the system. If all relays squeeze client connections, what
changes in the performance test results do we expect to see for various rate limiting parameter
values?

We have the capability of doing network-wide experiments to validate your theory, by
putting the rate and burst in the hourly networkstatus consensus and letting relays pick it up
from there. That is, you can modify the global network-wide parameters and then observe the
effects in the network. Note that the experiment will be complicated by the fact that only relays
running a sufficiently recent version of Tor will honor the parameters; that fraction should
increase significantly when Tor 0.2.2.x becomes the new stable release (sometime in late 2010).

And finally, once you have a good intuition about how throttling flows at point X affects
flow performance at point Y, we get to the really hard research questions. It’s probably the case
that no fixed network-wide rate limiting parameters are going to provide optimal behavior: the

3



parameters ought to be a function of the load patterns on the network and of the capacity of
the given relay. Should relays track the flows they’ve seen recently and adapt their throttling
parameters over time? Is there some flow distribution that relays can learn the parameters of,
such that we e.g. throttle the loudest 10% of flows? Can we approximate optimal behavior
when relays base their parameters on only the local behavior they see, or do we need a more
global view of the system to choose good parameters? And what does “optimal” mean here
anyway? Or said another way, how much flexibility do we have to define optimal, or do the
facts here railroad us into prefering certain definitions?

What are the anonymity implications of letting the behavior of user A influence the per-
formance of user B, in the local-view case or the global-view case? We could imagine active
attacks that aim to influence the parameters; can those impact anonymity?

As a nice side effect, this feature may provide a defense against Sambuddho’s bandwidth-
based link congestion attack [1], which relies on a sustained high-volume flow—if the attack
ever gets precise enough that we can try out our defense and compare.

Here are some other constraints to keep in mind:

• We need the Burst to be big enough to handle directory fetches (up to a megabyte or two),
or things will get really ugly because clients will get slowed down while bootstrapping.

• Mike’s bandwidth authority2 measurement scripts3 send traffic over relays to discover
their actual capacity relative to their advertised capacity. The larger the claimed capacity,
the more they send—up to several megabytes for the fast relays. If relays throttle these
bandwidth tests, the directory authorities will assign less traffic to them, making them
appear to provide better performance when in fact they’re just being less useful to the
network. This is an example of a case where it would be easy to misinterpret your results
if you don’t understand the rest of the Tor system. A short-term workaround would be to
turn the bandwidth authority Tors into relays so they don’t get throttled.

• You’ll want to do experiments on an established relay with the Guard flag, or it probably
won’t see many client connections except for clients fetching directory updates. Note that
the longer a relay has had the Guard flag, the more users it will have attracted; but after
a month this effect falls off.

• Thinking from an economic perspective, it may turn out that the performance for a
given user doesn’t actually get better if we throttle the high-volume users, yet we’ve still
improved things. That is, if the available capacity of the Tor network improves and thus it
is supporting more users, we’ve made a better Tor network even if we didn’t make it faster
for individual users. Fortunately, this feedback effect shouldn’t happen for short-term
experiments; but it’s something to keep in mind for the long term.

• It sure would be nice if whatever rate limiting algorithm you recommend is efficient to
calculate and update over time. Some relays are seeing tens of thousands of users, and
can’t afford much processing time on each.

2https://blog.torproject.org/blog/torflow-node-capacity-integrity-and-reliability-
measurements-hotpets

3https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.
BwAuthorities

4

https://blog.torproject.org/blog/torflow-node-capacity-integrity-and-reliability-measurements-hotpets
https://blog.torproject.org/blog/torflow-node-capacity-integrity-and-reliability-measurements-hotpets
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.BwAuthorities
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.BwAuthorities


References

[1] Sambuddho Chakravarty, Angelos Stavrou, and Angelos D. Keromytis. Traffic analysis
against low-latency anonymity networks using available bandwidth estimation. In Proceed-
ings of the 15th European conference on Research in computer security, ESORICS’10, pages
249–267, Berlin, Heidelberg, 2010. Springer-Verlag.

[2] Can Tang and Ian Goldberg. An improved algorithm for Tor circuit scheduling. In Angelos D.
Keromytis and Vitaly Shmatikov, editors, Proceedings of the 2010 ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4–8,
2010. ACM, 2010.

5


