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1 Introduction

Starting on August 20, 2013 the Tor network has seen a rapid spike in the number of directly
connecting users. This spike is apparently due to the large “mevade” click-fraud botnet running
its command and control (C&C) as a Tor Hidden Service. Figure 1 shows that estimated daily
clients increased from under 1 million to nearly 6 million in three weeks. Figure 2a shows
the effects on performance: measured downloading times for a 50 KiB file doubled, from 1.5
seconds to 3.0 seconds.

The Tor Project − https://metrics.torproject.org/

      0

1000000

2000000

3000000

4000000

5000000

19−Aug 26−Aug 02−Sep 09−Sep 16−Sep

Figure 1: Estimated daily Tor users, 18 August to 13 September 2013

However, the amount of traffic being carried by the network did not change dramatically, as
seen in Figure 2b. The primary cause of the problems seems to be the increased processing
load on Tor relays caused by the large increase in key exchanges required to build anonymous
encrypted tunnels, or circuits. When a Tor client - an Onion Proxy or OP - connects to the
network, it sends a CREATE cell to a Tor node, called a guard, which contains the first message
ga in a Diffie-Hellman key exchange, called an “onion skin”; the node receiving the create cell
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Figure 2: Download times and total bytes carried by the Tor network.

computes the shared key gab and replies with the second message g b, creating a 1-hop circuit.
After this, the client iteratively sends onion skins in EXTEND cells to the end of the circuit, which
extracts the onion skins and sends them in CREATE cells to the next relay, until all three hops
have exchanged keys.

• Extending a circuit – decrypting an “onion skin” and participating in a Diffie-Hellman
key exchange – is sufficiently compute expensive that high-weight relays can become
CPU-bound. The total bandwidth that high-weight relays can handle in onion-skins is
significantly lower than the network bandwidth.

• The hidden service protocol – explained in section 2 – causes at least three circuits to be
built every time a bot connects.

• When onion skins exceed the processing capacity of an OR, they wait in decryption
queues, causing circuit building latencies to increase.

• Queued onion skins eventually time out either at the relay or the client, causing the entire
partial circuit to fail, causing more onion skins to be injected to the network.

In response to this, the Tor Project modified release candidate 0.2.4.17-rc to prioritize processing
of onionskins using the more efficient ntor [7] key exchange protocol. Adoption of this release
helped the situation: as Figure 2a shows, measured download 50 KiB times as of late September
decreased to roughly 2.0 seconds. Figure 3 shows that circuit extensions using tor version
0.2.4.17-rc range between 5% and 15%, while circuit extensions using the stable release,
version 0.2.3.25, ranged between 5% and 30%. By November 2013, further efforts to find
and remove the infection by anti-malware teams from companies including Microsoft have
mitigated the immediate threat, though the several unmanaged hosts remaining could still
revive the botnet.

In this document, we consider longer-term strategies to ease the load on the network and
reduce the impact on clients. Full evaluation of the effectiveness of these strategies, impact
on privacy and performance for regular users, and relative ease of deployment remains an
ongoing challenge; the Tor Project welcomes the collaboration of the research and anonymity
community in meeting this challenge.
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Figure 3: Hourly measured failure rates, starting 27 September 2013, of EXTEND cells, for latest
stable Tor release (0.2.3.25) and ntor-prioritizing release candidate (0.2.4.17-rc).

We assess these strategies with the security goal of ensuring the availability of Tor under
the threat of a botnet that uses hidden services as its primary C&C channel. A “medium-term”
strategy is one which might be successful against a botnet that does not modify the behavior of
basic Tor binaries and does not respond strategically to changes in Tor designed to mitigate
botnet-induced load. On the other hand, a “long-term” strategy must contend with a botnet
that could be deployed in response to such methods, where the behavior of both the botnet
and the tor software can change adaptively to circumvent mitigation mechanisms. We note
that some attacks are out of the scope of this document, in particular we do not consider a
botnet that simply communicates with non-hidden servers through Tor, since such an attack
must contain traditional network addresses, and we do not consider a botnet that simply seeks
to conduct a denial of service attack on Tor by flooding the network with traffic in excess of its
capacity.

The remainder of this manuscript describes the major categories of medium- and long-term
responses that Tor could consider, along with the technical challenges that each would pose
to the research community. Section 3 considers medium-term strategies aimed at eliminating
a current botnet threat to Tor. Section 4 considers longer-term mechanisms to limit the rate
of circuit-building requests by any botnet. Section 5 describes mechanisms to reduce the load
from ordinary clients. Section 6 considers the idea of isolating hidden-service from regular Tor
client traffic.

2 Background: Tor Hidden Services

The Tor network provides a mechanism for clients to anonymously provide services (e.g.,
websites) that can be accessed by other users through Tor. We briefly review the protocol for
this mechanism:
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1. The hidden service (HS) picks a public “identity key” PKS and associated secret key SKS.
The HS then computes an “onion identifier” oS = H(PKS) using a cryptographic hash
function H. Currently, the hash function H is the output of SHA1, truncated to 80 bits.
This 10-byte identifier is base32-encoded to produce a 16-byte .onion address that Tor
users can use to connect to HS, such as 3g2upl4pq6kufc4m.onion.

2. The HS constructs circuits terminating in at least three different relays, and requests
these relays to act as its introduction points (IPs).

3. The HS then produces a “descriptor,” signed using the SKS, that lists PKS and its IPs. This
descriptor is published through a distributed hash ring of Tor relays, using oS and a time
period τ as an index.

4. A client OP connects to the HS by retrieving the descriptor using oS and τ, and building
two circuits: one circuit terminates at an IP and the other terminates at a randomly-
selected relay referred to as the rendezvous point (RP). The client asks the IP to send the
identity of the RP to the HS.

5. The HS then builds a circuit to the RP, which connects the client and HS.

Since lookups to the distributed hash ring are performed through circuits as well, and each
descriptor has three redundant copies, a client connecting to a hidden service could require
building up to 6 circuits; to reduce this load, clients cache descriptors and reuse rendezvous
circuits any time a request is made less than ten minutes after the previous connection.

3 Attack the Botnet

One set of possible medium-term responses would be to build defenses that protect Tor against
abuse by the current botnet. We consider an escalating series of possible mechanisms, depending
on the adaptivity of the botnet.

3.1 Descriptor Blacklisting

Discover the .onion address of the C&C hidden service using some variant of Biryokov et al’s
“Trawling for Hidden Services” attack [4]. Essentially, the descriptor can be recognized by
its popularity - the volume of requests is an order of magnitude larger than all other hidden
services combined. Once the descriptor has been discovered, blacklisting the HS public key
from the Hidden Service directory will prevent attempts to reach the blacklisted .onion address
by clients.

Unfortunately, this approach is both technically and philosphically problematic. Existing Tor
client software does not deal gracefully with failed descriptor lookups, leading to a situation
where lookup failures increase the circuit load on the network. Furthermore, an adaptive or
forward-looking botmaster can defeat identification through volume by multiplexing across
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multiple .onion addresses. Blacklisting can be defeated using multiple keys or domain gen-
eration algorithms – in the hidden service case, generating a sequence of public keys using a
fixed-seed pseudorandom sequence. Philosophically, a mechanism to blacklist certain hidden
service keys could potentially be abused for censorship.

3.2 Deanonymize the server

Assuming the botnet is prepared for blacklisting, the Tor Project could instead attempt to
discover the entry guards of the C&C server, repeatedly changing their availability (e.g. by
rotating identity keys), until a colluding entry guard is chosen, eventually learning the IP address
of the C&C server. Once the server is deanonymized, traditional anti-malware organizations
could be alerted, hopefully taking the botnet offline. From a techincal standpoint, coordinating
an attack of this scale, including the repeated coercion or identity-rotation of entry guards,
while not further disrupting the network, would seem to pose significant organizational and
engineering challenges. Depending on the fraction of colluding entry-guard bandwidth, the
time-scale of the attack could also be problematic.

3.3 Fingerprint and blacklist clients

A related, less costly, alternative is to look for connections to this hidden service (e.g. by waiting
until colluding nodes are chosen as Introduction Points or Rendezvous points) and attempt to
“fingerprint” a bot’s “phone home” connection [17, 6, 12, 15]. This fingerprint could then be
used to temporarily blacklist bots and/or the C&C server at entry guards. Deploying the solution
would involve technical challenges such as determining a stable fingerprint, and upgrading a
significant fraction of relays to support fingerprint matching and blacklisting. Furthermore, an
adaptive botnet could make this very difficult by employing many of the same traffic analysis
countermeasures employed by obfuscated transport mechanisms, for example, “morphing” [18]
C&C connections to look like interactions with various popular destinations (e.g. choosing at
random an Alexa Top 1000 web site, or even running a relay and choosing at random another
stream to emulate).

3.4 General Objections

Beyond the technical difficulties and the possibility for abuse of any of the mechanisms described
in this section, another concern is that “attacking” a botnet with hundreds of thousands or even
millions of nodes could lead to retaliation. So far the network has withstood the onslaught of
new clients created by this bot, but a concerted attack by a botnet of this size could easily bring
down the entire Tor network.
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4 Throttling

Since the primary concern from the point of view of the other users of Tor is the rate at which
botnet nodes consume the collective computing resources of the relays, another set of potential
solutions is to attempt to throttle or otherwise limit the rate of requests from the botnet. Two
key points to recall in evaluating solutions from this class are that (i) in many ways the botnet
has more resources available than the set of all regular Tor clients and (ii) neither bots nor
the C&C server are constrained to follow the standard Tor algorithms, although the current
implementations may do so.

4.1 Can we throttle by cost?

One way to control the rate at which circuit building requests enter the network is by making
it costly to send them. Tor could do this by requiring proof of the expenditure of a scarce
resource, for example, human attention, processor time, bitcoins, and so on. If the cost to
build a circuit or connect to a hidden service can be correctly allocated it could be the case
that ordinary users and services can easily afford the cost while the price for a botnet becomes
prohibitive. Depending on the resource used, correctly allocating the cost is an important
research question; we consider the problem for Proof of Work (CPU-based) and CAPTCHA
(human attention-based) systems below.

Besides the cost allocation problem, another technical challenge is ensuring that resources
can’t be double-spent, so that each resource expenditure in a given time period only authorizes
a single circuit or hidden service connection. Several approaches exist, but each would require
further investigation:

• Make the unit of pay cover a single circuit extension and have one of the relays extending
the circuit issue a challenge back to the client, which then must be answered before
the CREATE (or EXTEND) cell is processed, similar to the scheme described by Barbera et
al. [2]. This has the unfortunate side effect of adding an extra round-trip time to every
circuit-building request. Finding a way to hide this extra round-trip time could make it a
viable alternative, for some resources.

• Relay descriptors could include “puzzle specifications” that describe what the challenge
will be for a given time period, requiring a method to prevent “precomputing” a batch of
payments before the time period; how to solve this problem is an open question.

• Another method would use an extra trusted server that verifies resource expenditures
and issues relay- and time period-specific signed tokens, similar to ripcoins [16] or the
tokens in BRAIDS [9]. Using blinded tokens would limit the trust required in the server
so that it can’t compromise anonymity, and relay-specificity would allow each relay to
verify that tokens aren’t double-spent. However, this adds an extra signature-verification
to the task of onion-skin processing and another server and key that must be maintained.

All of these solutions also require adding extra verification to the onion-skin handshake,
incurring the additional risk implied in changes to the core Tor protocol.
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4.1.1 Proof of work (proves once more not to work?)

When the resource in question is processor time and challenges are, e.g. hashcash [1] targets,
the cost allocation strategy should dictate that the hidden service must pay a cost for each
connection, since bots clients and normal hidden service clients will have essentially identical
use profiles (from the point of view of relays) and computational resources. On the other hand,
the C&C hidden server(s) will collectively initiate many more circuits than any single “normal”
hidden server.

The key security challenge when considering an adaptive botmaster’s response to this
approach is the “chain-proving” attack (by analogy to chain voting [11]). In this attack, the
C&C server solves the first challenge it receives when a bot contacts the hidden service, but
then on each additional challenge, the previous bot is asked to solve the puzzle in time to allow
the next bot to connect. In principle the difference in latencies (caused by the need to pass a
puzzle to the bot through Tor) could potentially be detected, but an adaptive botmaster could
well build shorter circuits, and employ multiple bots in an effort to reduce the time needed to
solve a “proof of work” puzzle.

4.1.2 CAPTCHAs

If CAPTCHAs are used to verify expenditure of human attention, the relative cost allocation
should change to favor the client: clients of most hidden services will have human users, while
hidden servers will not. This raises additional technical problems, such as how CAPTCHAs can
be served through Tor without a GUI interface, how a user’s solution can be transferred to the
hidden service without violating privacy or allowing overspending, and how to deal with the
needs of completely headless services where neither the HS client nor the HS server have a
user’s attention to give.

Another technical challenge to deploying CAPTCHAs is how to defeat computationally
expensive automated solvers. Most commercially-deployed web CAPTCHAs can be solved with
success rates on the order of 1-10% per challenge, and the typical service mitigates this by
temporarily blacklisting an IP address after a small number of attempts. With anonymous
users, this becomes a more challenging problem to solve; without blacklisting a bot can simply
attempt as many CAPTCHAs as necessary to obtain an automated solution.

4.1.3 Network Contributions

As in several Tor incentive schemes [14, 9, 13, 10] we could require proof of contributions to
the network to receive high performance at volume, while providing a level of performance to
non-relay users that would be acceptable for normal clients but would significantly impede the
activity of a hidden C&C server. However, this would have significant impact on the security
of regular Tor users since it might simply incentivize a botmaster to run many compromised
relays.
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Figure 4: Results of guard throttling: 20 relays, 200 clients, 500 bots. (a) 5MiB download
times, (b) Circuit build times, (c) Total bytes read
4.2 Can we throttle at the entry guard?

A more direct approach would be to simply have guard nodes rate-limit the number of EXTEND

cells they will process on a given connection. If the entry guard won’t process the EXTEND

cell needed to build a circuit, the hidden server’s OP can’t flood the network with onion-skins.
Notice that this measure won’t prevent bots from flooding the network with circuit requests;
it simply makes the network ineffective from the botmaster’s standpoint and thus, hopefullly,
encourages botmasters to find some other C&C channel that causes less stress on the Tor
network.

Effective circuit throttling at the guard node faces a number of challenges, however. Biryukov
et al [3] found that the most popular hidden services see over 1000 requests per hour; if we
assume that these hidden services won’t modify Tor’s default behavior, then guard nodes need
to allow each client to extend over 300 circuits per hour; but since there are currently over
1200 relays with the guard flag, a single C&C server run by an adaptive botmaster could build
360 000 circuits per hour at this rate. We could decrease the cap and try to make it easier for
busy hidden servers to increase their guard count, but this significantly increases the chance
that a hidden server chooses a compromised guard and can be deanonymized.

One possibilty would be to use assigned guards. In this approach, ordinary clients would
pick guards as usual, and guards would enforce a low rate-limit rdefault on circuit extensions,
for example 30 circuits per hour.1 OPs that need to build circuits at a higher rate rserver – say,
2000 per hour – could follow a cryptographic protocol that would result in a verifiable token
that assigns a deterministic, but unpredictable, guard node for the OP when running on a
given IP address. These OPs could then show this token to the assigned guard and receive a
level of service sufficient for a busy hidden server, but not for a flood of circuit extensions. An
example of this type of protocol appears as Protocol 3 (section 3.3) in the BRAIDS design by
Jansen et al. [9]. The rates rdefault and rserver could appear in the network consensus, to allow
adjustments for the volume of traffic in the network. Figure 4 shows the result of simulating
this strategy with rdefault = 10 and rserver = 2000 using the shadow simulator [8]; despite nearly
identical bandwidth usage, the throttled simulation has performance characteristics similar to
the simulation with no botnet.

1Naturally, finding the right number to use for this default rate is also an interesting research challenge: a
very low rate-limit could prevent bots from flooding the network but might also disrupt legitimate hidden service
clients
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An additional technical challenge associated with guard throttling is the need to enforce the
use of entry guards when building circuits. If the C&C server joins the network as a relay, CREATE

cells coming from the hidden service would be indistinguishable from CREATE cells coming from
other circuits running through the relay, effectively circumventing the rate limit. In principle
this could be detected by a distributed monitoring protocol, but designing secure protocols of
this type that avoid adversarial manipulation has proven to be a difficult challenge.

4.3 Can we throttle by Tor version?

Another strategy that may be useful against a nonadaptive botmaster is to throttle (perhaps
temporarily) by Tor version. In this strategy, nodes running old versions of Tor could be either
severely throttled or completely ignored by nodes with the latest software. Since relays are
typically kept up-to-date and most clients access Tor using the Tor Browser Bundle (which
can inform clients on start-up when new versions are recommended or, in the future, might
incorporate auto-update functionality) the impact on typical users would be minimal, but a bot
that packages the Tor software may not be able to respond to updates. The technical challenges
here involve designing reliable methods to generate new software versions, (sufficently) secure
protocols to check that a client is running the software, and analyzing the use cases that might
affect clients’ ability to update frequently and the impact of throttling in these cases.

5 Client-side circuit-building adjustments

Although an adaptive botnet could always modify the Tor client code, the regular user base
still represents a large fraction of the load on the network, so another set of potential solutions
would be to focus on modifying the behavior of ordinary clients to reduce the circuit-building
load.

5.1 Can we reuse failed partial circuits?

Part of the problem caused by the heavy circuit-building load is that when a circuit times out,
the entire circuit is destroyed. This means that for every failed CREATE, at least three new
CREATE cells will be added to the network’s load. If we model the entire Tor network as having
probability p of having a CREATE cell timeout, then the expected number of CREATE cells needed
to successfully build a circuit will be the X0 satisfying the linear system:

X0 = pX0 +(1− p)X1 +1
X1 = pX0 +(1− p)X2 +1
X2 = pX0 +1 ,

where X i is the expected number of cells to complete a partial circuit with i hops. This gives us
X0 =

p2−3p+3
(1−p)3

.
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Figure 5: Expected onion-skin load per circuit created, for failure rate p

Conceptually, we can reduce this load by re-using a partially-built circuit, e.g. when a
timeout occurs, we truncate the circuit and attempt to extend from the current endpoint. In
this case, the expected number of CREATE cells needed to build a circuit will be simply X ′0 =

3
1−p

.
Figure 5 shows plots of both functions. We can see that for high enough failure rates, this
change causes a substantial reduction in load for the network. Figure 3 shows typical failure
rates for a stable (TAP) and release candidate (ntor) roughly one month after the beginning of
the botnet event; we can see that at the observed failure rates ranging from 10%-25%, reusing
partial circuits would reduce the load on the network by 10-30%.

Of course, this model ignores the fact that failure probabilities are neither static nor uniform
across the entire Tor network, and the fact that many nodes use “create fast” cells to exchange
a first-hop key without using Diffie-Hellman key exchange. Reducing the load introduced by
failures will also reduce the rate of circuit failures overall, but since CPU capacities vary widely
across the Tor network (and load balancing is by the essentially uncorrelated bandwidth of
nodes) the size of the actual effect due to this change is difficult to predict. Further evaluation
will be needed. Additionally, this change would also somewhat increase the power of selective
denial of service attacks [5], although such attacks typically only become noticeably effective
in situations where we would already consider Tor to be compromised.

5.2 Can we build circuits less often?

One reason for the relatively mild impact of the Mevade incident is that, while hidden services
initially build more circuits than ordinary downloads, Tor is configured to aggressively avoid
repeating this process through the use of “circuit dirtiness” defaults. When a Tor client builds
an ordinary circuit, is is marked as “clean” until it is first used for traffic, at which point it
becomes “dirty.” After a configurable amount of time (by default, 10 minutes) a “dirty” circuit
cannot be used for new traffic and will be closed after existing streams close. In contrast, the
“dirty timer” for a hidden service circuit restarts every time it is used, so that as long as a hidden
service is visited once very 10 minutes, there is no need to build a new circuit.
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Thus, another set of technical approaches to dealing with circuit stress would be to investi-
gate ways to reduce the number of circuits that Tor clients build:

• Network consensus documents could include a “recommended max dirtiness” parameter
that would adjust the lifetime of ordinary circuits, and a separate, potentially longer
“max dirtiness” parameter for hidden services. The technical challenges here are: first,
balancing the tradeoffs between decreased anonymity for individual users (the longer a
circuit is used, the more chance that some user activities will use the same circuit and be
linked by an adversary) versus allowing more users on the network; and second, reliably
setting this parameter in an automated fashion.

• Similarly, Tor clients currently build extra circuits for internal purposes like descriptor
fetching and timeout testing, that could be disabled by an appropriately set consensus
parameter.

• Finally, while “ordinary” circuits are built preemptively for use when needed, some tasks
such as hidden service connections, connecting to “rare” exit ports, and others currently
build “on-demand” circuits. Finding ways to avoid constructing new circuits for these
tasks, and analyzing the impact on anonymity and security, could reduce the amount of
circuit building and also the perceived performance impact of a botnet.

6 Can we isolate Hidden Service circuits?

Another approach to protect the regular users of the Tor network from resource depletion by a
hidden-service botnet would be to isolate hidden service onion-skin processing from ordinary
processing. By introducing a mechanism that allows relays to recognize that an EXTEND or
CREATE cell is likely to carry hidden service traffic, we could provide a means to protect the rest
of the system from the effects of this traffic, by scheduling priority or simple isolation.

An example of how this might work in practice is to introduce new NOHS-EXTEND/NOHS-
CREATE cell types with the rule that a circuit that is created with an NOHS-CREATE cell will silently
drop a normal EXTEND cell, or any of the cell types associated with hidden services. If relays also
silently drop NOHS-EXTEND cells on circuits created with ordinary CREATE cells, then NOHS-CREATE

circuits are guaranteed not to carry hidden service traffic. Updated clients would then create
all circuits with NOHS-CREATE unless connecting to a hidden service. When a sufficient number
of clients and relays update their Tor version, a consensus flag could be used to signal relays
to begin isolating processing of ordinary CREATE cells. For example, these cells might only be
processed in the last 20ms of each 100ms period, leaving 80% of processing capacity available
for regular traffic. The flag could be triggered when hidden service circuits exceed a significant
fraction of all circuits in the network.2

This solution protects the network and typical users from a massive botnet hidden service,
but would, unfortunately, intensify the effect on users of legitimate hidden services in time

2Detecting this condition in a privacy-preserving manner represents another technical challenge requiring
further research.
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periods when an attack was detected. As with guard throttling, the intended effect would thus
be to encourage botmasters to develop C&C channels that do not stress the Tor hidden service
ecosystem, while providing stronger protection against botnet clients flooding the network.

One privacy concern related to this approach is that as the network upgrades to versions of
Tor supporting NOHS-CREATE, identification of hidden-service traffic approaches deterministic
certainty. By contrast, current hidden service circuits follow traffic patterns that allow them to
be identified with high statistical confidence [4] only. Because (excluding botnet traffic) the
base rates of hidden service traffic compared to all other traffic are low, this will also decrease
the privacy of hidden service users. One potential mitigation mechanism would be to have
clients only use NOHS-CREATE when the consensus flag for hidden service isolation is activated,
which would indicate that hidden service clients would already have a large anonymity set.

7 Conclusions

As of this writing, further evaluation is needed before recommending any approach. In the
medium-term, throttling Tor versions prior to 0.2.4.17-rc may provide the most immediate
relief. In the long term, partial circuit reuse seems safe, pending complete analysis of the impact
on anonymity; further evaluation is needed to determine the effectiveness of other measures.
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