An Analysis of Tor Bridge Stability

— Making BridgeDB give out at least one stable bridge per user —

Karsten Loesing

karsten@torproject.org

Tor Tech Report 2011-10-001
October 31, 2011

1 Introducing the unstable bridges problem

As of October 2011, the Tor network consists of a few hundred thousand clients, 2400 public
relays, and about 600 non-public bridge relays. Bridge relays (in the following: bridges) are
entry points which are not publicly listed to prevent censors from blocking access to the Tor
network. Censored users request a small number of typically three bridge addresses from the
BridgeDB service via email or http and then connect to the Tor network only via these bridges.
If all bridges that a user knows about suddenly stop working, the user needs to request a new
set of bridge addresses from BridgeDB. However, BridgeDB memorizes the user’s email or IP
address and only gives out new bridges every 24 hours to slow down enumeration attempts.
The result is that a user who is unlucky enough to receive only unreliable bridges from BridgeDB
won’t be able to connect to the Tor network for up to 24 hours before requesting a new set of
bridges.

In this report we propose that BridgeDB keeps bridge stability records, similar to how the
directory authorities keep relay stability records, and includes at least one stable bridge in its
responses to users. In fact, BridgeDB currently attempts to do this by including at least one
bridge with the Stable flag assigned by the bridge authority in its results. This approach is
broken for two reasons: The first reason is that the algorithm that the bridge authority uses
to assign the Stable flag is broken to the extent that almost every bridge has the Stable flag
assigned. The second reason is that the Stable flag was designed for clients to select relays for
long-running streams, not for BridgeDB to select reliable entry points into the Tor network. A
better metric for stable bridges would be based on bridge uptime and on the frequency of IP
address changes. We propose such a metric and evaluate its effectiveness for selecting stable
bridges based on archived bridge directories.

2 Defining a new bridge stability metric

The directory authorities implement a few relay stability metrics to decide which of the relays
to assign the Guard and Stable flag [1, 2]. The requirements for stable bridges that we propose
here are similar to the entry guard requirements. That is, stable bridges should have a higher
fractional uptime than non-stable ones. Further, a stable bridge should be available under the
same IP address and TCP port. Otherwise, bridge users who only know a bridge address won’t
be able to connect to the bridge once it changes its address or port. We propose the following
requirements for a bridge to be considered stable in the style of the Guard and Stable flag
definition:

A bridge is considered stable if its Weighted Mean Time Between Address Change is at
least the median for known active bridges or at least 30 days, if it is ‘familiar’, and
if its Weighted Fractional Uptime is at least the median for ‘familiar’ active bridges
or at least 98 %. A bridge is ‘familiar’ if 1/8 of all active bridges have appeared
more recently than it, or if it has been around for a Weighted Time of 8 days.

This bridge stability definition contains three main requirements:

* The Weighted Mean Time Between Address Change (WMTBAC) metric is used to track the
time that a bridge typically uses the same IP address and TCP port. The (unweighted)
MTBAC measures the average time between last using address and port a, to last using
address and port a;. This metric is weighted to put more emphasis on recent events
than on past events. Therefore, past address sessions are discounted by factor 0.95 every
12 hours. The current session is not discounted, so that a WMTBAC value of 30 days can
be reached after 30 days at the earliest.

* The Weighted Fractional Uptime (WFU) metric measures the fraction of bridge uptime in
the past. Similar to WMTBAC, WFU values are discounted by factor 0.95 every 12 hours,
but in this case including the current uptime session.

* The Weighted Time (WT) metric is used to calculate a bridge’s WFU and to decide whether
a bridge is around long enough to be considered ‘familiar.” WT is discounted similar to
WMTBAC and WFU, so that a WT of 8 days can be reached after around 16 days at the
earliest.

All three requirements consist of a dynamic part that depends on the stability of other
bridges (e.g., “A bridge is familiar if 1/8 of all active bridges have appeared more recently than
it, ...”) and a static part that is independent of other bridges (e.g., “... or if it has been around
for a Weighted Time of 8 days.”). The dynamic parts ensure that a certain fraction of bridges is
considered stable even in a rather unstable network. The static parts ensures that rather stable
bridges are not excluded even when most other bridges in the network are stable.

3 Extending BridgeDB to track bridge stability

There are at least two code bases that could be extended to track bridge stability and include at
least one stable bridge in BridgeDB results: the bridge authority and BridgeDB. The decision

2

for extending either code base affects the available data for tracking bridge stability and is
therefore discussed here.

The bridge authority maintains a list of all active bridges. Bridges register at the bridge
authority when joining the network, and the bridge authority periodically performs reachability
tests to confirm that a bridge is still active. The bridge authority takes snapshots of the list
of active bridges every 30 minutes and copies these snapshots to BridgeDB. BridgeDB parses
these half-hourly snapshots and gives out bridges to users based on the most recently known
snapshot.

The bridge stability history can be implemented either in the bridge authority code or in
BridgeDB. On the one hand, an implementation in BridgeDB has the disadvantage that bridge
reachability data has a resolution of 30 minutes whereas the bridge authority would learn about
bridges joining or leaving the network immediately. On the other hand, the bridge stability
information is not used by anything in the Tor software, but only by BridgeDB. Implementing
this feature in BridgeDB makes more sense from a software architecture point of view. In the
following we assume that BridgeDB will track bridge stability based on half-hourly snapshots of
active bridge lists, the bridge network statuses.

4 Simulating bridge stability using archived data

We can analyze how BridgeDB would track bridge stability and give out stable bridges by
using archived bridge descriptors. These archives contain the same descriptors that BridgeDB
uses, but they are public and don’t contain any IP addresses or sensitive pieces of information.
In Section 4.1 we look at the problem of missing data due to either the bridge authority or
BridgeDB failing and at the effect on tracking bridge stability. We then touch the topic of how
bridge descriptors are sanitized and how we can glue them back together for our analysis in
Section 4.2. Next, we examine typical bridge stability values as requirements for considering a
bridge as stable in Section 4.3. In Section 4.4 we estimate what fraction of bridges would be
considered as stable depending on the chosen stability requirements. Finally, in Section 4.5
we evaluate how effective different requirement combinations are for selecting stable bridges.
Result metrics are how soon selected bridges change their address or what fractional uptime
selected bridges have in the future.

4.1 Handling missing bridge status data

The bridge status data that we use in this analysis and that would also be used by BridgeDB to
track bridge stability is generated by the bridge authority and copied over to BridgeDB every
30 minutes. Figure 1 shows the number of running bridges contained in these snapshots from
July 2010 to June 2011.

For most of the time the number of bridges is relatively stable. But there are at least two
irregularities, one in July 2010 and another one in February 2011, resulting from problems
with the bridge authority or the data transfer to the BridgeDB host. Figure 2 shows these two
intervals in more detail.

The missing data from July 14 to 27, 2010 comes from BridgeDB host not accepting new
descriptors from the bridge authority because of an operating system upgrade of the BridgeDB

800 -

600 -
_ "\
Running 400 -

bridges

200 -

I I I I
Sep 2010 Dec 2010 Mar 2011 Jun 2011

Figure 1: Median number of running bridges as reported by the bridge authority

host. During this time, the bridge authority continued to work, but BridgeDB was unable to
learn about new bridge descriptors from it.

During the time from January 27 to February 16, 2011, the tor process running the bridge
authority silently died twice after a Tor version upgrade, but the script to copy descriptors
to BridgeDB kept running. In this case, BridgeDB received fresh tarballs containing stale
descriptors with a constant number of 687 relays, visualized in light gray. These stale descriptors
have been excluded from the sanitized descriptors and the subsequent analysis. The bridge
authority was restarted on February 16, 2011, resulting in the number of running bridges
slowly stabilizing throughout the day.

Both this analysis and a later implementation in BridgeDB need to take extended phases of
missing or stale data into account.

4.2 Detecting address changes in sanitized descriptors

The bridge descriptor archives that we use in this analysis have been sanitized to remove all
addresses and otherwise sensitive parts [3]. Part of this sanitizing process is that bridge IP
addresses are replaced with keyed hashes using a fresh key every month. More precisely, every
bridge IP address is replaced with the private IP address 10.x.x.x with x.x.x being the 3 most
significant bytes of SHA-256 (IP address | bridge identity | secret).

A side-effect of this sanitizing step is that a bridge’s sanitized IP address changes at least
once per month, even if the bridge’s real IP address stays the same. We need to detect these
artificial address changes and distinguish them from real IP address changes.

In this analysis we use a simple heuristic to distinguish between real IP address changes and
artifacts from the sanitizing process: Whenever we find that a bridge has changed its IP address
from one month to the next, we look up how long both IP addresses were in use in either
month. If both addresses were contained in bridge descriptors that were published at least
36 hours apart, we consider them stable IP addresses and attribute the apparent IP address

500 - \"."‘A\.‘/ ‘E\vh"‘ﬁ"\,ﬂf/ ﬁ-.,/-“’. r\.‘v /ﬂ“ S
400 -

Running 300 -
bridges 5 -

.

100 -

I I I
Jul 12, 2010 Jul 19, 2010 Jul 26, 2010

800 - A .
{‘;‘,4 \\’:ﬂ S "&‘. S

600- A AN
Running VI

bridges 400 -

200 - 4

0-
|

I I I
Jan 24, 2011 Jan 31, 2011 Feb 07, 2011 Feb 14, 2011

Figure 2: Number of Running bridges during phases when either the bridge authority or the
BridgeDB host were broken

change to the sanitizing process. Otherwise, we assume the bridge has really changed its IP
address. Obviously, this simple heuristic might lead us to false conclusions in some cases. But
it helps us handle cases when bridges rarely or never change their IP address which would
otherwise suffer from monthly address changes in this analysis.

4.3 Examining typical stability metric values

The definition of bridge stability on page 2 contains three different metrics, each of which
having a dynamic and a static part. The dynamic parts compares the value of a bridge’s
stability metric to the whole set of running bridges. Only those bridges are considered as stable
that exceed the median value (or the 12.5th percentile) of all running bridges. The static
requirement parts are fixed values for all stability metrics that don’t rely on the stability of
other bridges.

Figure 3 visualizes the dynamic (solid lines) and static parts (dashed lines) of all three
requirements. The dynamic WMTBAC requirements are higher than previously expected. A
value of 60 means that, on average, bridges keep their IP address and port for 60 days. The
dynamic values are cut off at 30 days by the static requirement which should be a high enough
value. The goal here is to give blocked users a stable enough set of bridges so that they don’t
have to wait another 24 hours before receiving new ones.

We can further see that the dynamic requirements are relatively stable over time except for
the two phases of missing bridge status data. The first phase in July 2010 mostly affects WT,
but neither WMTBAC nor WFU. The second phase in February 2011 affects all three metrics.

N=M uelpa 1M oted y1g°gT

OVELlINM Uelpsin

I I I I
Sep 2010 Dec 2010 Mar 2011 Jun 2011

Figure 3: Dynamic requirements for considering a bridge as stable

We can expect the selection of stable bridges during February 2010 to be more random than at
other times.

4.4 Estimating fractions of bridges considered as stable

Requiring a bridge to meet or exceed either or both WMTBF or WFU metric results in considering
only a subset of all bridges as stable. The first result of this analysis is to outline what fraction of
bridges would be considered as stable if BridgeDB used either or both requirements. In theory,
all parameters in the bridge stability definition on page 2 could be adjusted to change the set
of stable bridges or focus more on address changes or on fractional uptime. We'’re leaving the
fine-tuning for future work when specifying and implementing the BridgeDB extension.

Figure 4 shows the fraction of stable bridges over time. If we only require bridges to meet
or exceed the median WMTBAC or the fixed value of 30 days, roughly 55 % of the bridges are
considered as stable. If bridges are only required to meet or exceed the WT and WFU values,
about 7/8 x 1/2 = 43.75 % of bridges are considered as stable. Requiring both WFU and
WMTBAC leads to a fraction of roughly 35 % stable bridges.

The fraction of 33 % stable bridges seems appropriate if 1 out of 3 bridges in the BridgeDB
results is supposed to be a stable bridge. If more than 1 bridge should be a stable bridge, the

60% -

0f —
50% Requirements for

considering a

0f —
Fraction of 0% J bridge as stable
Running 3004 -

bridges WMTBAC
20% WFU
10% - — WFU & WMTBAC

0% -
I I I I
Sep 2010 Dec 2010 Mar 2011 Jun 2011

Figure 4: Impact of requiring stable bridges to meet or exceed the median WFU and/or
WMTBAC on the fraction of running bridges considered as stable

requirements need to be lowered, so that a higher fraction of bridges is considered stable.
Otherwise, the load on stable bridges might become too high.

4.5 Evaluating different requirements on stable bridges

The main purpose of this analysis is to compare the quality of certain requirements and
requirement combinations on the stability of selected bridges. Similar to the previous section,
we only compare whether or not the WMTBAC or WFU requirement is used, but don’t change
their parameters.

The first result is the future uptime that we can expect from a bridge that we consider stable.
We calculate future uptime similar to past uptime by weighting events in the near future more
than those happening later. We are particularly interested in the almost worst-case scenario
here, which is why we’re looking at the 10th percentile weighted fractional uptime in the future.
This number means that 10 % of bridges have a weighted fractional uptime at most this high
and 90 % of bridges have a value at least this high.

Figure 5 visualizes the four possible combinations of using or not using the WMTBAC
and WFU requirements. In this plot, the “WFU & WMTBAC” and “WFU” lines almost entirely
overlap, meaning that the WMTBAC requirement doesn’t add anything to future uptime of
selected bridges. If the WFU requirement is not used, requiring bridges to meet the WMTBAC
requirement increases future uptime from roughly 35 % to maybe 55 %. That means that there
is a slight correlation between the two metrics, which is plausible.

The second result is the time that a selected bridge stays on the same address and port. We
simply measure the time that the bridge will keep using its current address in days. Again, we
look at the 10th percentile. 90 % of selected bridges keep their address longer than this time.

Figure 6 shows for how long bridges keep their address and port. Bridges meeting both
WEFU and WTMBAC requirements keep their address for 2 to 5 weeks. This value decreases to 1

100% -

YA M
P\A‘”"’“M Requirements for

80% - considering a
bridge as stable

10th perc. 60%-

WFU in — WFU & WMTBAC
the future 40% — w \ n H WFU
u L w WMTBAC
20% — None

0% -
I I I I
Sep 2010 Dec 2010 Mar 2011 Jun 2011

Figure 5: Impact of requiring stable bridges to meet or exceed the median WFU and/or
WMTBAC on the 10th percentile weighted fractional uptime in the future

to 3 weeks when taking away the WFU requirement, which is also a result of the two metrics
beeing correlated. The bridges that only meet the WFU requirement and not the WMTBAC
requirement change their address within the first week. If we don’t use any requirement at all,
which is what BridgeDB does today, 10 % of all bridges change their address within a single
day.

5 Concluding the bridge stability analysis

In this report we propose to extend BridgeDB to make it give out at least one stable bridge per
user. Bridge stability can be calculated based on bridge status information over time, similar
to how the directory authorities calculate relay stability. The bridge stability metric proposed
here is based on a bridge’s past uptime and the frequency of changing its address and/or port.
Requiring at least 1 bridge of the 3 to be given out to users greatly reduces the worst case
probability of all bridges being offline or changing their addresses or ports. The price for this
increase in stability is that stable bridges will be given out more often than non-stable bridges
and will therefore see more usage.

We suggest to implement the described bridge stability metric in BridgeDB and make it
configurable to tweak the requirement parameters if needed. Maybe it turns out to be more
useful to lower the requirements for a bridge to become stable and give out two stable bridges
per response. It’s also possible that the requirement for a bridge to keep its address becomes
less important in the future when bridge clients can request a bridge’s current address from
the bridge authority. All these scenarios can be analyzed before deploying them using archived
data as done in this report.

35-

Requirements for
28- considering a
10th perc. bridge as stable
timeon 21- ,
the same — WFU & WMTBAC
address 14 - WMTBAC
in days
WFU
- — None
O . —y

I I I I
Sep 2010 Dec 2010 Mar 2011 Jun 2011

Figure 6: Impact of requiring stable bridges to meet or exceed the median WFU and/or
WMTBAC on the 10th percentile time on the same address

References

[1]

[2]

Roger Dingledine and Nick Mathewson. Tor directory protocol, version 3. https://gitweb.
torproject.org/tor.git/blob_plain/HEAD: /doc/spec/dir-spec. txt.

Karsten Loesing. An analysis of Tor relay stability. Technical Report 2011-06-001, The Tor
Project, June 2011.

Karsten Loesing. Overview of statistical data in the Tor network. Technical Report 2011-
03-001, The Tor Project, March 2011.

https://gitweb.torproject.org/tor.git/blob_plain/HEAD:/doc/spec/dir-spec.txt
https://gitweb.torproject.org/tor.git/blob_plain/HEAD:/doc/spec/dir-spec.txt

	Introducing the unstable bridges problem
	Defining a new bridge stability metric
	Extending BridgeDB to track bridge stability
	Simulating bridge stability using archived data
	Handling missing bridge status data
	Detecting address changes in sanitized descriptors
	Examining typical stability metric values
	Estimating fractions of bridges considered as stable
	Evaluating different requirements on stable bridges

	Concluding the bridge stability analysis

