
Comparison of Tor Datagram Designs

Steven J. Murdoch
steven.murdoch@cl.cam.ac.uk

Tor Tech Report 2011-11-001
November 7, 2011

1 Background

A number of performance-related problems have been noted with the current Tor architec-
ture, resulting in many users restricting their Tor usage to only tasks which are of high
sensitivity, or not using Tor at all. The most comprehensive analysis of Tor’s performance
was performed by Reardon [5]. In this work, the author identified the major cause of
latency was delay in the output queue at Tor nodes, resulting from TCP flow control. This
delay is considered higher than necessary due to:

• High-bandwidth streams unfairly trigger congestion avoidance on low-bandwidth
streams;

• Packet dropping and re-ordering on one stream triggers unnecessary delay on other
streams.

It has been proposed that to improve performance, the node-to-node communication
should be by unreliable datagrams (UDP), rather than the current reliable in-order streams
(TCP). This is hoped to improve Tor performance by:

• Allowing better end-to-end congestion management;

• Reducing queue lengths on nodes;

• Preventing cell-loss on one circuit delaying cells on other circuits.

Also, moving to an underlying datagram transport may make it easier to support trans-
porting UDP in addition to TCP. More detailed analysis has been performed by Reardon
and Goldberg [6].

1



Initiator

IP

TCP

TLS

Circuit

Cell Auth

Setup

IP

TCP

TLS

Intermediate Previous

IP

TCP

TLS

Circuit

Cell Auth

Setup

IP

TCP

TLS

Setup

Next

Circuit

Tor

Host

Figure 1: Protocol stack active when extending a circuit

2 Tor’s current architecture

To understand proposals for modifications to Tor, it is helpful to understand the current
architecture. This section will describe Tor’s protocol stack, and while it does not use
exactly the same terminology as the Tor Protocol Specification, the description chosen is
designed to make it easier to compare with alternative proposals.

2.1 Tor circuit extension

Figure 1 shows the scenario when the circuit Initiator (normally termed the Onion Proxy)
has a circuit which currently goes through one intermediate hop, and terminates on
Previous. The Initiator then wishes to extend this circuit to terminate on Next. In this
scenario the active layers are:

IP The host operating system IP stack (and lower layers) is responsible for routing IP
packets between the host and other Tor-nodes.

TCP The host operating system TCP stack is responsible for providing hop-by-hop
congestion control, in-order delivery, and reliability for TLS data.

TLS The TLS stack built into Tor (OpenSSL) is responsible for providing hop-by-hop
authentication, integrity and confidentiality.

Circuit The Tor circuit cryptography layer is responsible for providing confidentiality.
It also de-multiplexes between different circuits being carried by TLS connections and
performs label-switching routing.

While the Tor software on all nodes is identical, on intermediate nodes, only the layers
up to and including Circuit are active. Cells received from the incoming TLS connection

2



Application

IP

TCP

Cell Auth

Gateway

IP

TCP

TLS

Initiator Intermediate

IP

TCP

TLS

Circuit

IP

TCP

TLS

Exit

Circuit

SOCKS

HTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTP

Figure 2: Protocol stack active when carrying data

are decrypted, label-switched, and routed to the outgoing TLS connection according to its
routing table.

Cell auth Tor’s cell authentication provides end-to-end integrity

Setup Tor’s setup protocol provides connection setup and management tightly coupled
to end-to-end authentication and key exchange. It is also responsible for end-to-end
congestion control.

The Setup layer can interact directly with the TLS layer when a control message is intended
for the directly connected party, or via the Circuit and Cell Auth layers when the control
message must pass through intermediaries.

2.1.1 The circuit extension process

In the case of circuit extension, the Initiator first wraps the control message with authentica-
tion (Cell Auth), two layers of encryption (Circuit) and passes the cell down to TLS.

Intermediate then removes one layer of encryption and passes the cell down to TLS.

When Previous receives the cell from TLS, the final layer of encryption is removed, the
authentication tag is verified and the control message is processed. Previous will see that the
control message indicates circuit extension (RELAY_EXTEND), and will send a CREATE
control message to Next.

2.2 Data transport

When an application wishes to send data over Tor, some additional layers are brought into
play.

3



Application The client application wishes to send some stream data over Tor.

SOCKS The SOCKS layer encapsulates the stream data with a SOCKS header and carries
out the SOCKS handshake.

TCP and IP In addition to transporting TLS data between Tor nodes, the host TCP/IP
stack is also responsible for transporting the SOCKS stream to the Tor initiator (typically
running on the same host as the application).

Gateway At the Initiator, Tor’s Gateway layer receives SOCKS packets from the appli-
cation SOCKS layer, extracts the payload data, and splits it into cells. These are then
encapsulated in the same way as control messages, and passed to the Exit node via any
intermediaries. This layer is also responsible for multiplexing multiple application streams
over one circuit.

At the Exit, the Gateway layer receives payload data encapsulated in cells, and sends it out
to the appropriate host via the host TCP/IP stack.

Cell Auth, Circuit, TLS These layers are unchanged as intermediate nodes cannot dif-
ferentiate between control and data transport cells.

2.2.1 The data transport process

Based on the SOCKS handshake between SOCKS on the Application, the Initiator may create
and extend circuits as necessary until it has established a circuit with the Exit.

The Gateway layer at the Initiator then then instructs the Gateway layer at the exit to make a
plain TCP connection to the host requested by Initiator, and send the application stream
data to it.

3 Alternative architecture proposals

This section discusses alternative architectures for Tor, involving the addition of a datagram
hop-by-hop transport.

3.1 Reardon

Reardon and Goldberg [6] propose replacing the TLS layer with DTLS (a datagram variant
of DTLS) and replacing TCP with UDP, as shown in Figure 3. DTLS still provides confiden-

4



Application

IP

TCP

Cell Auth

Gateway

IP

TCP

DTLS

Initiator Intermediate

IP

UDP

DTLS

Circuit

IP

UDP

DTLS

Exit

Circuit

SOCKS

HTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTP

UDP

uTCP uTCPuTCP

Figure 3: The main change in Reardon’s proposal is to have 1:1 circuit per TCP connection
mapping, rather than Tor’s n:1, but TCP connections are still hop-by-hop in both schemes.
To stop the individual connections being apparent to a network observer, TCP frames
are wrapped in DTLS encryption. To allow this wrapping to be performed, a user-space
TCP stack is employed, which has the added advantage of reducing usage of kernel-level
sockets (a scarce resource on some platforms) and allowing greater customization of
congestion control.

tiality and authenticity, however UDP does not provide reliability, in-order delivery, or
congestion control.

The authors therefore propose adding TCP back in, but with each pair of nodes hav-
ing a separate hop-by-hop user-space TCP connection for each circuit, rather than one
kernel-space TCP connection for all circuits. For efficiency, the user-space TCP header is
compressed by removing redundant fields.

Since the user-space TCP provides reliable in-order delivery of Tor cells, there needs
to be no change to the cell encryption or authentication. A user-space TCP stack also
allows more versatile congestion management; for example dropping cells before they
acknowledged when the corresponding exit circuit is congested.

3.2 Viecco: UDP-OR

Viecco [7], as shown in Figure 4 uses end-to-end TCP rather than the hop-by-hop approach
of Reardon, and uses the host TCP stack rather than a user-space one. Also, control traffic
is not sent within a TCP stream so is unreliable. If messages are lost the initiator must
detect a timeout and repeat the action. TCP is end-to-end, thereby allowing middle nodes
to drop and re-order packets, but leaving open the possibility of fingerprinting attacks.

3.3 Freedom 2.0

Full details on Freedom [1] is not available but it appears that, while like Viecco’s proposal,
TCP is end-to-end, in Freedom the ends are the Initiator and destination Server, rather than

5



Application

IP

TCP

Cell Auth

Gateway

IP

Link Crypto

Initiator Intermediate

IP

UDP

Circuit

IP

Exit

Circuit

SOCKS

HTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTPUDP

Link Crypto Link Crypto

UDP

TCP

SOCKS

Figure 4: In the architecture proposed by Viecco, the initiator TCP stack is responsible for
splitting SOCKS payload data into TCP frames. Tor would then transport these frames
directly (after compressing and sanitizing some fields), for it to be reassembled by the host
TCP stack on the exit node, have any SOCKS header removed, and be emitted again via
the host TCP stack. Intermediate nodes use UDP, with reliability and congestion control
managed by the initiator and exit. A custom link encryption/authentication scheme is
used, but DTLS could equally take its place. The Circuit and Cell Auth cryptography
schemes are updated to handle dropped or re-ordered cells.

Application

IP

TCP

Cell Auth

Gateway

IP

Link Crypto

Initiator Intermediate

IP

UDP

Circuit

IP

Exit

CircuitHTTP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

TCP

HTTP

UDP

Link Crypto Link Crypto

UDP

Figure 5: Like Viecco’s proposal, TCP is end-to-end, however in Freedom this is initiator
to server, rather than initiator to exit.

6



Application

IP

UDP

Cell Auth

Gateway

IP

UDP

DTLS

Initiator Intermediate

IP

UDP

DTLS

Circuit

IP

UDP

DTLS

Exit

Circuit

SOCKS

VoIP

Cell Auth

Circuit

Gateway

Tor

Host

Stream Stream

Server

IP

UDP

VoIP

Figure 6: The Liberatore scheme is largely the same as Tor, except that data is received over
UDP SOCKS rather than TCP SOCKS, transported over DTLS/UDP rather than TLS/TCP,
and emitted as UDP rather than TCP. To handle the lack of in-order delivery, the Circuit
cryptography is changed to have an explicit rather than implicit sequence number, and
Cell Auth authenticates cells on the basis of the hash of a single cell rather than a running
hash over all cells received in the circuit so far.

Initiator and Exit. Like Viecco’s proposal, the initiator is responsible for reliability, through
its host TCP stack. However, SOCKS is not used (Freedom captures application data in
the host network stack), and control traffic is sent over TCP rather than UDP, and thus
may assume reliable in-order delivery. Freedom also performs protocol filtering, before
the data stream is split into TCP frames.

3.4 Cebolla and IPPriv

Other examples of the Freedom design are Cebolla [2] and IPPriv [3]. Cebolla is notable for
having a restricted topology, however in terms of transport protocol it appears to be similar
to Freedom. IP packets are captured through a tun device on the initiator, encrypted, and
then sent as UDP packets. At the exit nodes, IP packets are emitted over the tun device.
As such, the characteristics of the initiator TCP stack are exposed to the destination.

Kiraly [3] proposes an anonymous communication system based on IPSec: IPPriv. It oper-
ates in a similar way to Tor, with telescoping circuits and link encryption, but uses IPSec
for both. Unlike Tor circuit encryption, IPSec adds a header whether or not authentication
is enabled. Therefore cells must be padded to hide how many layers of encryption is
needed, and there is a limit on path length. Architecturally, IPPriv is similar to Freedom:
IP packets are captured at the initiator and emitted at the exit nodes.

3.5 Liberatore: 100-tor-spec-udp

Liberatore [4] proposes a design (shown in Figure 6) for the transport of UDP over Tor, but
which does not offer in-order reliable delivery, so therefore cannot be used for TCP. It is
intended to work in parallel to the existing TCP variant of Tor, and all control traffic is sent

7



over the existing TLS/TCP connections between nodes; only UDP payload cells are sent
over the DTLS/UDP links.

4 Transport protocols

The transport protocol is used, at a minimum for meeting the in-order reliable transport
properties expected by applications to be provided by TCP.

4.1 Kernel-mode TCP

One option for a transport protocol is to use the kernel TCP stack as a transport protocol.
When TCP sessions are end to end, this introduces a serious anonymity vulnerability as
the host operating system could be fingerprinted (if TCP sessions are hop by hop, as in
Reardon’s proposal, this would not be an issue). There are also other challenges of using
the kernel-mode TCP stack. Firstly, special operating system access would be needed to
intercept packets from virtual network interfaces. Secondly, Tor would be unable to have
low level control over the TCP congestion control algorithms.

4.2 User-mode TCP

Reardon uses the Daytona TCP stack, which has the difficulty of not being publicly
available and under a license incompatible with Tor’s There have been initial attempts
to port the FreeBSD TCP stack to user-space, but these are not yet mature. In any case,
Tor will be the primary user of any user-mode TCP stack for the foreseeable future, which
could come with significant maintenance costs.

4.3 User-mode SCTP

When reliability is initiator-to-exit, or hop-by-hop, there is no need to use TCP. An al-
ternative transport protocol is SCTP, which offers similar functionality to TCP, but with
some extra features. There have been proposals to port the FreeBSD SCTP stack to user-
space, and this would be a potential candidate for use in Tor, but the same arguments for
user-mode TCP apply to SCTP.

4.4 µTP

µTP is a reliable in-order transport protocol using the LEDBAT (Low Extra Delay Back-
ground Transport) congestion avoidance algorithm, so as the achieve the following goals:

8



• Use all available bandwidth on a link

• Add little latency

• Yield to TCP flows using the same bottleneck link

Its major advantage over other user-space alternatives is that it is implemented in libutp1,
and this implementation has seen wide usage. Therefore if Tor were to adopt this library,
we would not be entirely responsible for maintenance, and we have reasonable expectation
that there would not be blocking bugs. However, µTP is designed to yield to TCP, whereas
Tor will likely aim to be TCP-friendly but not necessarily yield to it. Also, µTP does not
have an explicit method to preserve fairness between flows sharing the same link – one of
the main goals of a transport protocol for Tor. Nevertheless, it may be possible to tweak
the parameters of libutp to be more suitable for Tor.

4.5 CurveCP

CurveCP is a transport protocol offering congestion management and reliable in-order
delivery. It also implements mandatory encryption and authentication. While both of
these are required, they are not suitable for use within datagram-Tor directly. Firstly,
hop-by-hop encryption and authentication may need to be performed without reliable
in-order delivery. Secondly, the circuit encryption must be done without increasing length
but CurveCP increases message lengths to accommodate the authentication tag.

Even so, it would be possible to use CurveCP as the transport protocol, and accept the
inefficiency of encrypting data which is already encrypted. End-to-end authentication
is desirable, so this feature would be of use although it would be inefficient to use the
CurveCP handshake protocol when the two ends already share a key.

Alternatively, CurveCP could be refactored to separate out the congestion control and
reliable in-order delivery and use this as an end-to-end transport protocol. Also, the
encryption and authentication could be used for hop-to-hop links, but with reliable in-
order delivery disabled.

A user-mode implementation for CurveCP is available2, but does not include an explicit
copyright statement. However related software from the author (Curve25519) was released
into the public domain, so it is likely that CurveCP will also be.

1https://github.com/bittorrent/libutp/
2See curvecp/ in http://hyperelliptic.org/nacl/nacl-20110221.tar.bz2

9

https://github.com/bittorrent/libutp/
http://hyperelliptic.org/nacl/nacl-20110221.tar.bz2


5 Design decisions to be made

5.1 Reliability and congestion control end-points and granularity

A variety of options are available for the end-points for reliability and congestion control
protocols. In Tor, TCP is used for both reliability and congestion control, on a hop-by-hop
basis, with link level granularity. In Reardon’s proposal, TCP is still hop-by-hop, but at
circuit level granularity. With Viecco’s proposal, TCP is initiator-to-exit, at stream level.
Finally, Freedom, IPPriv, and Cebolla all have TCP initiator-to-server.

An advantage of initiator-to-exit/server reliability is that intermediate nodes may drop
cells when load is high, and rely on congestion control to reduce the data rate. In contrast,
with hop-by-hop reliability, once a cell has been acknowledged, it may not be dropped.
However, circuit level cryptography is made easier and more efficient if it can assume
reliability from the underlying transport.

A risk of initiator-to-exit/server reliability is that the characteristics of the reliability
protocol are exposed to nodes other than those which the initiator directly connects to.
This raises the possibility of fingerprinting, especially if the initiator’s host networking
stack is used.

Link level granularity should in principle have lower overhead, but has the disadvantage
that lost cells from one circuit will cause unnecessary delay on other circuits. Circuit
level granularity, as proposed by Reardon, removes this problem and thus decreases
latency when there is packet loss. Stream level granularity requires initiator-to-exit/server
reliability as the stream level is only exposed to the exit node and server, but in principle
should reduce unnecessary delay even more.

Of course it is not necessary for reliability and congestion control to be linked, but existing
transport protocols offer both. Tor currently uses TCP for link level congestion control, but
uses a custom algorithm for circuit and stream level. Unless stream level granularity is
used for the transport-protocol-provided congestion control, it is likely that some other
congestion control algorithm will be needed to preserve fairness between different streams
on a circuit.

5.2 First-hop protocol

The primary reason to use a datagram transport is to reduce congestion within the core
network. Therefore, it is not essential to use datagram transport for the connection from
initiator to first-hop. Bridge users, who desire censorship-resistance may therefore wish to
continuing using TLS over TCP, rather than datagrams. This will be relatively simple to
accommodate with hop-to-hop reliability. However, with initiator to exit/server reliability,
either there would need to be TCP within TCP (and the consequential performance impact),
or the bridge node would need to be the TCP end point, rather than initiator.

10



It may however be desirable to use a datagram transport for the first-hop when used in
conjunction with pluggable transports. This is because the pluggable transport would not
need to provide reliability and so could run over UDP with little difficulty (e.g. disguising
traffic as VoIP). Even with TCP-based pluggable transports, switching to datagram trans-
port for the first hop could be useful. For example, while HTTP runs over TCP, it does not
provide in-order reliable transport when multiple connections would be used (as is the
case for any realistic implementation).

5.3 Migration path

Clearly it is essential that there be a smooth transition between the existing TCP transport
and datagram transport. It is also necessary that the initial users of datagram transports
are sufficiently numerous so as not to be deanonymized. It would also be desirable to make
maximum usage of nodes which have been upgraded to support datagram transports.

Therefore, Tor would have to support both TCP and datagram transports until a sufficient
proportion of the network has upgraded. If TCP is still used for first-hop connections, Tor
nodes would have to support TCP for the foreseeable future.

With hop-by-hop reliability, it would be possible to use datagram transports for segments
of a circuit where a pair of nodes support datagram transports. In contrast, with initiator-
to-exit/server reliability, all hops for a circuit would need to support datagram transports
for a circuit to use datagram transports. This means that more circuits would able to, at
least partially, use datagram transports for hop-by-hop reliability.

So as to preserve the anonymity set of datagram transport users, clients should not use
datagram transports until a sufficient number of other clients support them. This could
be achieved by having a flag in the consensus which states whether datagram transports
should be used. This flag would only be set once enough of the network supports datagram
transports, on the assumption that clients upgrade roughly as frequently as nodes.

The need for collective action is less severe for hop-by-hop reliability because the datagram
transport is only visible on a hop-by-hop basis. However, it should be assumed that
whether a circuit is using hop-by-hop reliability will be visible to other hops on the circuit
based on traffic characteristics. For initiator-to-exit/server reliability whether the initiator
supports datagram transport will be clearly visible to all hops on the circuit.

5.4 Transport protocol

A transport protocol will need to be selected, such as µTP, CurveCP, TCP or SCTP (user-
mode or kernel-mode).

11



5.5 Hop-to-hop encryption and authenticity

For all schemes considered, hop-by-hop encryption is required to hide which packet
belongs to which circuit; authenticity is also highly desirable. Currently Tor uses TLS, but
this requires a reliable link layer, which is likely to be eliminated to reduce unnecessary
delay in conditions of packet loss. The “natural” choice would be to use DTLS, as adopted
by Reardon, but a custom protocol, such as that adopted by Viecco, is another possibility.
CurveCP includes a suitable link layer encryption, but the implementation tightly couples
the encryption/authentication layer with the reliability and congestion control.

5.6 Socket usage

One current limiting factor for Tor nodes running on Windows is limitations on number of
sockets. All the proposed datagram schemes with user-space reliability protocols reduce
socket usage on intermediate nodes, which may be beneficial if the IOCP functionality in
libevent does not completely solve this issue. However high socket usage is potentially still
an issue on exit nodes, except for those proposals which use initiator-to-server reliability.

5.7 Circuit encryption and cell authentication

Tor’s current circuit encryption scheme is AES CTR mode without explicit IVs. This
approach depends on a reliable in-order transport so where reliability is above circuit
encryption in the protocol stack (as it is with initiator-to-exit/server reliability), a different
approach would be needed. The most obvious way of extending circuit encryption would
be to include an IV in every cell, which would increase the protocol overhead but allow cells
to be dropped or re-ordered without affecting the decryption of others. For hop-by-hop
reliability, circuit encryption is above reliability and so no change is needed.

Tor’s current cell authentication scheme is to include a running digest over all cells sent on
this circuit. The digest is only 32 bits, on the basis that a circuit is destroyed if the digest
doesn’t match and therefore in the event that a cell is not detected as corrupted immediately,
it is very likely that the following cell will be rejected and the circuit destroyed.

Calculating a running digest is possible with hop-by-hop reliability so there need be no
change to cell authentication for this approach. However with Liberatore’s and Viecco’s
approach, cell authentication is performed at a lower layer in the protocol stack than any
reliability protocol and so a running digest is no longer suitable. Therefore a cell digest
could be used, but to give similar security guarantees, the digest length would need to be
extended.

Tor does not guarantee authenticity of cells, mainly because this would require a non-
length-preserving cell encryption and thus limit path lengths and require padding to hide
how many layers of encryption are in place. The path length limit is no longer an issue
because there are other methods in place for Tor to limit path length, however padding may

12



still be undesirable for efficiency reasons. Tor’s lack of cell authenticity permits tagging
attacks, but this is explicitly permitted by the Tor threat model. If this is considered a
problem, an approach like Kiraly’s, which includes hop-by-hop cell authentication, could
be adopted.

5.8 Carrying UDP traffic

The primary motivation for Tor datagram transports is to improve the performance of
TCP over Tor. However, it may also be desirable to allow UDP to be sent over Tor,
for example VoIP traffic. All the schemes which use initiator-to-server reliability will
naturally support UDP, as Tor would not need to even know the protocol type of packets.
Liberatore’s proposal is explicitly designed to support UDP, although UDP packets will
not be indistinguishable from TCP packets because they are inside different link-layer
encapsulations. Viecco’s proposal could be easily extended to transport UDP, if the SOCKS
server on the exit node were extended to support UDP. Reardon’s proposal is more
challenging to support UDP because reliability is ensured at the circuit layer and so any
dropped cells will be re-transmitted, which will defeat the purpose of the application using
UDP in the first place. Circuits could be marked as not needing reliability, but a different
circuit encryption and cell authentication scheme would need to be used for these; also
such circuits would be distinguishable from TCP circuits by intermediate nodes.

5.9 Carrying ACK messages

ACK messages needed for reliability and congestion control may need to be treated
specially because they are much shorter than data packets. It would be possible to pad
them to the same size as data packets, but this may be inefficient. With hop-by-hop
reliability, ACK packets would be encrypted using DTLS which only adds a small amount
of padding, so an external adversary would likely be able to tell which packets are ACK
messages and thus learn something about the circuits being carried. With initiator-to-
server/exit reliability the situation is more problematic as now information on traffic
characteristics would be more visible to middle nodes.

Unreliable control messages Viecco proposes that control messages should not be car-
ried in a reliable transport. A transport session is set up only between Initiator and Exit
and only used for carrying data. This is best option in terms of minimizing state on inter-
mediate Tor nodes, and is the closest to the standard Internet router model. It also reduces
the overhead of setting up transport streams for carrying control messages. However it
is complex from a protocol-design perspective as all participants must assume that any
control message may be dropped at any point and arbitrarily re-ordered. In principle
control messages may be corrupted too, but the hop-by-hop integrity protocol should
prevent this from happening.

13



6 Recommendations and future study

This section proposes a set of provisional recommendations and raises questions which
should be answered in further analysis.

6.1 Architecture

The most fundamental question to be resolved is the overall architecture: hop-by-hop
reliability (e.g. Reardon), initiator-to-exit reliability (e.g. Viecco) or initiator-to-server re-
liability (e.g. Freedom). There are arguments for each approach, but in the absence of
conclusive performance results, one approach is to guide the architecture by engineering
and deployment difficulties. Initiator-to-server reliability would require low-level access
on exit nodes, so as to generate raw packets, which could put pressure on the already
scarce resource of exit bandwidth. Initiator-to-exit has the problem that the cryptographic
protocols would need to be modified to handle the lack of reliable in-order delivery of
cells. In comparison, this makes hop-by-hop reliability (e.g. Reardon) the most promising
approach.

6.2 Transport protocol

No single candidate for transport protocol is the obvious choice. The anonymity and
engineering difficulties with using the kernel-mode TCP stack suggest that this approach
is not suitable, except perhaps for experimentation. User-mode TCP or SCTP stacks are
possible, but are not yet available in a usable form. µTP and CurveCP are readily available,
but µTP would be the easiest to integrate and so is a good choice for testing. Further study
is needed as to whether investing engineering time in user-mode TCP or SCTP is a good
choice, compared to analyzing and tuning µTP so that it has the properties required.

6.3 Other trade offs

A consequence of adoption hop-by-hop reliability is that Tor would remain able only to
carry TCP traffic. This may be the prudent engineering choice, so as to avoid having to
change many aspects of Tor at the same time. Nevertheless, if VoIP and similar protocols
are strongly desirable, it may be worth revisiting this decision.

References

[1] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems 2.0 architecture.
White paper, Zero Knowledge Systems, Inc., December 2000.

14



[2] Zach Brown. Cebolla – pragmatic ip anonymity. Technical report, June 2002. http:
//www.cypherspace.org/cebolla/cebolla.pdf.

[3] C. Kiraly, G. Bianchi, and R. Lo Cigno. Solving performance issues in anonymiza-
tion overlays with a L3 approach. Technical Report DISI-08-041, University of
Trento, September 2008. http://disi.unitn.it/locigno/preprints/
TR-DISI-08-041.pdf.

[4] Marc Liberatore. Tor unreliable datagram extension proposal. Proposal 100, The Tor
Project, February 2006. https://gitweb.torproject.org/torspec.git/
blob/HEAD:/proposals/100-tor-spec-udp.txt.

[5] Joel Reardon. Improving Tor using a TCP-over-DTLS tunnel. Master’s thesis, Univer-
sity of Waterloo, September 2008. http://hdl.handle.net/10012/4011.

[6] Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-DTLS tunnel. In
Proceedings of the 18th USENIX Security Symposium, August 2009.

[7] Camilo Viecco. UDP-OR: A fair onion transport design. In HotPETS, 2008. http:
//www.petsymposium.org/2008/hotpets/udp-tor.pdf.

15

http://www.cypherspace.org/cebolla/cebolla.pdf
http://www.cypherspace.org/cebolla/cebolla.pdf
http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf
http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/100-tor-spec-udp.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/100-tor-spec-udp.txt
http://hdl.handle.net/10012/4011
http://www.petsymposium.org/2008/hotpets/udp-tor.pdf
http://www.petsymposium.org/2008/hotpets/udp-tor.pdf

	Background
	Tor's current architecture
	Tor circuit extension
	The circuit extension process

	Data transport
	The data transport process


	Alternative architecture proposals
	Reardon
	Viecco: UDP-OR
	Freedom 2.0
	Cebolla and IPPriv
	Liberatore: 100-tor-spec-udp

	Transport protocols
	Kernel-mode TCP
	User-mode TCP
	User-mode SCTP
	TP
	CurveCP

	Design decisions to be made
	Reliability and congestion control end-points and granularity
	First-hop protocol
	Migration path
	Transport protocol
	Hop-to-hop encryption and authenticity
	Socket usage
	Circuit encryption and cell authentication
	Carrying UDP traffic
	Carrying ACK messages

	Recommendations and future study
	Architecture
	Transport protocol
	Other trade offs


