
Towards Side Channel Analysis of Datagram Tor vs
Current Tor

Nick Mathewson and Mike Perry
{nickm,mikeperry}@torproject.org

Tor Tech Report 2018-11-002
November 27, 2018

1 Disclaimers

This whitepaper assumes that you know how Tor works.
There are probably some very good references here that we didn’t remember to cite.

2 Introduction

Tor’s current design requires that its data cells be transmitted from one end of a circuit to
the other using a reliable, in-order delivery mechanism. To meet this requirement, Tor relays
need to buffer cells–spending resources, hurting performance, and risking susceptibility to
out-of-memory attacks.

In order to improve Tor’s performance and resilience, researchers have made several propos-
als for ways to relax the requirement for reliable in-order delivery. In general, these "datagram-
based" proposals would allow relays to drop or reorder cells as needed, and move the re-
sponsibility for providing a reliable stream protocol to the endpoints (the client and the exit
relays).

But by increasing flexibility for the relays, and by increasing the complexity of the endpoints,
these datagram proposals also create some new attack vectors. Before we can deploy any of
these designs, we need to consider whether these attacks weaken Tor’s security, or whether they
are irrelevant given other, stronger attacks against Onion Routing.

This whitepaper tries to list these attacks, and to provide a framework for thinking about
them as we move forward with our design analysis.

We hope that this whitepaper will help researchers and others in the Tor community to
understand these issues, so that we can work together to find new ideas to analyze and mitigate
the attacks described here, and to help deploy a faster and more reliable network while still
maintaining our current (or better) security guarantees. We hope that our description of the
problem space will inspire, not discourage, future experiments in this area, and help with a
holistic understanding of the risks, rewards, and future areas of work.

1



2.1 A toy system

We will be analyzing a system that differs from Tor in the following ways.

• The link between a client and its guard, and between each pair of relays uses DTLS over
UDP: packets can be dropped or re-ordered by an attacker on the link, but not modified,
read, or forged. Each DTLS packet contains an integer number of cells.

• Each circuit between a client and an exit traverse several relays, as before. The cells on a
circuit are no longer guaranteed to arrive reliably, but can be dropped or re-ordered on
the wire, or by a relay.

• To provide reliable service end-to-end, the client and the exit each use a TCP-like protocol to
track which application bytes have been sent and received. Received data is acknowledged;
dropped data is retransmitted.

• The cryptography to be used for circuit encryption is not specified here.

• A reliable signaling mechanism between relays (to create, destroy, and maintain circuits)
is not specified here.

(It is likely that many readers will be able to design a system that resists the attacks below
better than the design above. But please remember as you do, that a design which improves a
system in one way may constrain it in others, or may offer insufficient benefits to be clearly
superior to Tor as it is today. Before we can deploy, we will need not just defenses, but also a
systemic way to compare the effect of these defenses, used together, to the Tor status quo.)

3 Some preexisting attacks to consider

To put the datagram-based attacks into context, we’ll start out by listing some attacks against
the current non-datagram Tor design (and proposed defenses for those, where they exist).

We assume, as usual, an adversary who controls some but not all relays, and some but not
all ISPs.

A note on attack power: the accuracy of many of these attacks, particularly the passive ones,
depends on the type of traffic being sent, the quantity of similar traffic elsewhere on the Tor
network, the quantity of concurrent activity by the same client, the adversary’s observation
position and data retention resolution, the quantity of padding, and the tendency of the network
to preserve or alter packet timing information in transit.

In many cases, we don’t have good metrics or evaluation methodology to determine how
much harder or easier one attack is than another.

3.1 End-to-end passive traffic correlation attacks.

Here’s the gold-standard base-line attack: an attacker who can watch any two points on the
same circuit is assumed to be able to realize, without having observed very much traffic at all,

2



that the two points are indeed on the same circuit by correlating the timing and volume of data
sent at those two points.

When one of these points is also linked to the client, and one is linked to the client’s activity,
this attack deanonymizes the client.

Tor’s current design focuses on minimizing this probability, and also shifting its characteristics,
through things like network diversity and long-term entry points. The attack may also become
harder (and/or slower) when there is a lot of similar concurrent traffic on the Tor network,
which means that adding users who use Tor for many things is in itself a form of mitigation.

Proposed defenses in this area include deliberate obfuscation of message volume through
padding, and of message timing through random delays, as well as things like traffic splitting
and more complex traffic scheduling for loud flows. While we have completed some work on
link padding, and are progressing on a deployment for circuit padding, it is not yet clear if
we can use these defenses in an affordable way against a correlation attack, and it is hard to
measure their effectiveness on a realistic Tor-sized network.

3.2 Data tagging side-channels by relays

If two relays are on the same circuit, they can surreptitiously communicate with one another
transforming the data in the RELAY cells, and un-transforming the data before passing it on.
Since Tor’s current encryption protocol is malleable, this allows them to send a large number of
bits per cell.

This attack can also be used when two relays do not know if they are on the same circuit.
One relay modifies a cell, and the other one looks for such modifications. If the data is processed
by an honest relay, it will destroy the circuit, but the client may or may not notice that the
circuit has destroyed. (And the dishonest relay may delay informing the client!)

To defend against this, we plan to replace our encryption with a non-malleable algorithm.
See for example proposals 202, 261, and 295.

3.3 Destructive side-channels (internal)

Even if we remove the malleability in Tor’s encryption, a smaller side-channel remains: A
dishonest relay can destroy a circuit at any time, either by corrupting the circuit or simply
sending a DESTROY cell along it. A third party can destroy a large number of circuits at once
by remotely attacking a client or relay – either disabling that relay, or making it close circuits
because of the OOM handler. (See the Sniper Attack paper.)

If a circuit is corrupted (as would happen if a relay attempted data tagging against one of
the non-malleable cryptographic algorithms mentioned above), other points on the circuit can
tell which cell is the first corrupted cell. If a circuit is destroyed at one point, other points on
the circuit can tell how many cells were sent before the destruction.

It is likely that based on data or traffic patterns, most parties on a circuit will be able to
distinguish a prematurely destroyed circuit from one that was shut down normally.

In each case, this attack can be used to send (log n) bits of information per circuit, at the
cost of destroying the circuit, where n is the number of cells that might be sent over the circuit
in total. Some noise will exist, since we expect some circuits to be prematurely closed on their
own. We don’t know how much noise.

3



We also have various heuristics that can attempt to detect if this happens too often; however
at best they likely reduce the rate that information that can be sent in this way rather than
eliminate it. We also lack methodology to measure the rate of information in this case, to help
determine if we can successfully reduce it further.

3.4 Destructive network probes (external)

Though TLS is resilient against many forms of active attacks, it can’t resist an attacker who
focuses against the underlying TCP layer. Such an attacker can, by forging TCP resets, cause
all the entire TLS connection to be dropped, thereby closing all the circuits on it. This kind
of attack can be observed at other points on the network in a way similar to the destructive
side-channels noted above.

This class of attack seems to be easier against Tor’s current design than it would be against
(some) datagram-based designs, since datagram-based designs are resilient to more kinds of
traffic interference.

3.5 Timing-based watermarking attacks

Hostile relays can also introduce a side channels to a circuit by introducing patterned delays
into the cells. For example, a relay could buffer a large number of cells, then transmit a "1" bit
by sending a cell in a given time period, or a "0" by not sending cells in that time period.

An attacker can also mount this attack without controlling relays: if the attacker performs a
DoS attack against a relay or its traffic, it can observe changes in the traffic volume elsewhere
on the network.1

The bandwidth of this side-channel will be limited, since other relays on the network will
naturally buffer and delay traffic, obscuring the pattern some. There are also limits to how long
packets can be delayed before the relay is no longer usable.2

Proposals for resisting this type of watermarking attack are mostly of the same type that
would be needed for resisting end-to-end correlation. An adversary that can perform active
attacks to introduce their own unique traffic patterns intuitively seems much stronger than one
that must passively use potentially common patterns. We lack a unified framework to tell us
how much stronger this adversary is than the passive one, especially against various defenses.

3.6 Traffic injection attacks

Related to the active timing attack, in some positions (like exit and RP) relays can inject cells
that are ignored by the other endpoint. These injected patterns will not impact the user’s
experience, but will allow unique traffic patterns to be sent and detected by the adversary at
crucial times.3

1See https://www.freehaven.net/anonbib/cache/ccs07-latency-leak.pdf and http://cybercentre.
cs.ttu.ee/wp/wp-content/uploads/2017/01/crw2017_final.pdf.

2See: Rainbow (https://www.freehaven.net/anonbib/cache/ndss09-rainbow.pdf); Swirl: (https://
www.freehaven.net/anonbib/cache/ndss11-swirl.pdf); Backlit (detection): (https://www.freehaven.net/
anonbib/cache/acsac11-backlit.pdf)

3See https://petsymposium.org/2018/files/papers/issue2/popets-2018-0011.pdf

4

https://www.freehaven.net/anonbib/cache/ccs07-latency-leak.pdf
http://cybercentre.cs.ttu.ee/wp/wp-content/uploads/2017/01/crw2017_final.pdf
http://cybercentre.cs.ttu.ee/wp/wp-content/uploads/2017/01/crw2017_final.pdf
https://www.freehaven.net/anonbib/cache/ndss09-rainbow.pdf
https://www.freehaven.net/anonbib/cache/ndss11-swirl.pdf
https://www.freehaven.net/anonbib/cache/ndss11-swirl.pdf
https://www.freehaven.net/anonbib/cache/acsac11-backlit.pdf
https://www.freehaven.net/anonbib/cache/acsac11-backlit.pdf
https://petsymposium.org/2018/files/papers/issue2/popets-2018-0011.pdf


These injection attacks arise from former adherence to Postel’s Maxim. Tor has since
departed from this maxim, and instead opted for stricter forward compatibility through feature
versioning, but removing instances in the codebase where injected cells can be permitted has
proven challenging.

4 Attacks unique to datagram designs

Here are some attacks that are enabled by (or at any rate behave differently under) datagram-
based designs.

4.1 Traffic-stream tagging (by relays and internet links)

Because the new system permits a number of transformations on traffic that were not previously
allowed, we need to look at how those transformations can be used to attack users.

As a trivial example, any router can relay an arbitrary subset of the cells that it receives
on a circuit, in an arbitrary order, due to the exact properties the reliable transport aims to
provide. The pattern induced in this way will be detectable by the exit relay when it attempts
to reconstruct the stream. Because we explicitly allow this kind of transformation, the circuit
will not be killed after a single dropped cell, but rather will continue working silently.

Moreover, any ISP can mount the same attack by dropping and/or re-ordering DTLS calls.
A remote attacker may also be able to mount this attack by flooding any router between a

client and its guard, thereby causing some of the DTLS messages to get dropped.
If we are using TCP between client and exit, the acknowledgments sent by each endpoint

will provide confirmation about which data it received and which it did not. If instead of TCP, we
use some other protocol where the end-points communicate even more information about which
packets they did and did not receive, this can provide an even higher-bandwidth side-channel.

The bandwidth of this side-channel is fairly high, since it allows the attacker to send over a
bit per cell. But it will be somewhat noisy, since some cells will dropped and reordered naturally.

Padding, traffic splitting, and concurrent activity will increase the noise of this attack; we
lack metrics to tell us how much, and we have no framework as of yet to measure the throughput
of the resulting side channel in these conditions.

4.2 Traffic Fingerprinting of TCP-like systems

Today, because Tor terminates TCP at the guard node, there is limited ability for the exit node to
fingerprint client TCP behavior (aside from perhaps measuring some effects on traffic volume,
but those are not likely preserved across the Tor network).

However, when using a TCP-like system for end-to-end congestion control, flow control,
and reliability, the exit relay will be able to make inferences about client implementation and
conditions based on its behavior.

Different implementations of TCP-like systems behave differently. Either party on a stream
can observe the packets as they arrive to notice cells from an unusual implementation. They
can probe the other side of the stream, nmap-style, to see how it responds to various inputs.

5



If two TCP-like implementations differ in their retransmit or timeout behavior, an attacker
can use this to distinguish them by carefully chosen patterns of dropped traffic. Such an attacker
does not even need to be a relay, if it can cause DTLS packets between relays to be dropped or
reordered.

This class of attacks is solvable, especially if the exact same TCP-like implementation is
used by all clients, but it also requires careful consideration and additional constraints to be
placed on the TCP stack(s) in use that are not usually considered by TCP implementations –
particularly to ensure that they do not depend on OS-specific features or try to learn things
about their environment over time, across different connections.

4.3 Retransmit-based watermarking

Even if all TCP-like implementations are identical, they will retransmit with different timing
and volume based on which cells have been acked or not acked. These differences may be
observable from many points on the circuit, or from outside the network. Such retransmissions
can be induced from outside the network, by hostile relays, or even by a hostile endpoint that
pretends not to have received some of the packets.

We again lack metrics to indicate that it is substantially worse (or not worse) than other
similar attacks. Intuitively, the key difference in degree would come from how much easier it is
to perform this attack than the delay based watermarking attacks on traditional Tor above.

4.4 Congestion and flow control interference

To the extent that the TCP-like stack uses information learned from one stream to alter its
behavior on another stream, an attacker can exploit this interference between streams make all
of the streams from a given party more linkable.

All implementations will have some amount of interference, to the extent that their band-
width is limited. But some may have more than necessary.

4.5 Non-malleable encryption designs only currently exist for in-order
transports (or the return of data tagging attacks)

Our proposed defenses against data tagging require us to move to non-malleable encryption,
with each cell’s encryption tweaked by a function of all previous cells, so that if even a single
cell is modified, not only is that cell corrupted, but no subsequent cell can be decrypted.

It seems nontrivial to achieve this property with datagram based designs, since we require
that cells on a circuit can be decrypted even when previous cells have not arrived. We can
achieve data-based non-malleability by using a per-hop MAC for each cell – but we would
no longer be able to get the property that a since altered cell would make the whole circuit
unrecoverable. This would enable a one-bit-per-cell side-channel, similar but possibly more
powerful than the packet dropping side-channel above. (Because the congestion window is
essentially a bit vector of received cells, the adversary in this scenario gets to corrupt cells in
carefully chosen ways instead of merely dropping them.)

6



Perhaps other cryptographic schemes could be found to resist data-tagging in a datagram-
based environment or limit its impact, but we’ll need to figure out what the requirements and
models are.

As a proof-by-example of a mitigating system: Proposal 253 describes a way to send a rolling
MAC out of band, to ensure integrity of packets between those cells. But can we do better? Can
middle nodes enforce integrity in some other way?

4.6 The risks of success: lower latency strengthens timing attacks?

There are two factors that make timing-correlation and timing-watermark attacks more difficult
in practice: similarity between different users’ traffic, and distortion in timing patterns caused
by variance in cell latency on the network. To whatever extent we successfully reduce this
distortion by lowering latency, it seems that we’ll make these attacks more powerful.

In particular, geolocation attacks based on observed circuit setup times may get worse.4

We’re already making improvements to Tor that may make these attacks worse – Tor latency
has dropped and will continue to drop due to improvements like KIST, more relays, and better
load balancing. Further incremental improvements like explicit congestion control on the
existing Tor network will reduce latency even further.

It may be that a more performant Tor becomes less safe than a slower, less usable Tor. On the
other hand, a more usable Tor will likely be used by more people, which we know makes many
forms of traffic analysis harder (slower?) in general. However, we have no way to measure this
tradeoff on many different attack types.

Delay and latency can also be added back in, and this has been a common defense against
both active adversaries and timing attacks in the anonymity literature, but such delays have
user-facing consequences, unless they are carefully restricted to the cases where the adversary
can directly measure RTT and can be amortized away by things like pre-emptive circuit building.
In this and other cases, it is also not clear to what degree adding delay is more useful than
adding more padding.

5 Towards comparing attacks

A high-bandwidth attack is worse than a low-bandwidth attack. One bit is enough to send "is
this the targeted user?", but 32 bits is enough to send a whole IP address.

The impact of these attacks become worse if they can be repeated over time.
An attack that can be performed by an ISP relaying traffic is worse than one that can be

performed by a relay. An attack that can be performed remotely against either of these is worse
still.

We need some kind of methodology to help us compare the new side channels that data-
gram transports may enable to the existing side channels in Tor, particularly delay-based and
congestion-based side channels. Ideally, these metrics or evaluation methodology would also
allow us to compare these side channels under various forms of defense, such as padding.

4See again https://www.freehaven.net/anonbib/cache/ccs07-latency-leak.pdf

7

https://www.freehaven.net/anonbib/cache/ccs07-latency-leak.pdf


At the very least, we need some way to compare the side channels in datagram transports
to those that already exist.

We also likely need a common reference research prototype and/or platform to experiment
with and study, so that attacks and defenses are reproducibly comparable. Reproducibility in
attack and defense literature is often not reliable, due to differing implementations, in addition
to differing methodology and evaluation frameworks.

6 Open Questions

Why permit reordering? There are schemes (like order-preserving encryption) that we could
deploy on middle nodes to prevent reordering, without allowing earlier nodes to differentiate
padding from non-padding. Do we derive any benefit by allowing a relay to send cells on a
single circuit in a different order than the order in which it receives those cells on that circuit?
This may be an answered question in congestion control research, but we lack the domain
expertise to know what this tradeoff is.

Related: what cryptography to use? Our current stateful encryption schemes benefit from
having access to "all previous cells" when encrypting or decrypting each following cell. If we
allow a cell to be {de,en}crypted before previous cells are received, we’ll need a new model for
onion-routing cryptography – possibly one with significantly bigger headers.

7 Future work

We hope to investigate these issues with researchers and others in the Tor community as we
work towards solutions to help scale and strengthen the Tor network. Understanding the risks
and rewards that datagram-based transports introduce to Tor is important to help us select
designs that both help improve performance but also guarantee safety for Tor users. We hope
that by cataloging these risks, future conversations about improved network designs can bring
answers and broader improvements. We look forward to working with others interested in
helping solve these problems to design a better Tor.

8 Acknowledgments

Our thanks to Chelsea Komlo for many helpful suggestions and comments on earlier drafts of
this whitepaper, and for writing the request for future work.

9 Further reading

• Steven Murdoch, "Comparison of Tor Datagram Designs", 2011. https://murdoch.is/
papers/tor11datagramcomparison.pdf

8

https://murdoch.is/papers/tor11datagramcomparison.pdf
https://murdoch.is/papers/tor11datagramcomparison.pdf


• Mashael AlSabah and Ian Goldberg. "PCTCP: per-circuit TCP-over-IPsec transport for
anonymous communication overlay networks", 2013. http://cacr.uwaterloo.ca/techreports/
2013/cacr2013-09.pdf

• Michael F. Nowlan, David Wolinsky, and Bryan Ford. "Reducing Latency in Tor Circuits with
Unordered Delivery", 2013. https://www.usenix.org/system/files/conference/foci13/
foci13-nowlan.pdf

• Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann The Sniper attack:
Anonymously Deanonymizing and Disabling the Tor Network", 2013 https://www.nrl.
navy.mil/itd/chacs/sites/edit-www.nrl.navy.mil.itd.chacs/files/pdfs/13-1231-
3743.pdf

9

http://cacr.uwaterloo.ca/techreports/2013/cacr2013-09.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-09.pdf
https://www.usenix.org/system/files/conference/foci13/foci13-nowlan.pdf
https://www.usenix.org/system/files/conference/foci13/foci13-nowlan.pdf
https://www.nrl.navy.mil/itd/chacs/sites/edit-www.nrl.navy.mil.itd.chacs/files/pdfs/13-1231-3743.pdf
https://www.nrl.navy.mil/itd/chacs/sites/edit-www.nrl.navy.mil.itd.chacs/files/pdfs/13-1231-3743.pdf
https://www.nrl.navy.mil/itd/chacs/sites/edit-www.nrl.navy.mil.itd.chacs/files/pdfs/13-1231-3743.pdf

	Disclaimers
	Introduction
	A toy system

	Some preexisting attacks to consider
	End-to-end passive traffic correlation attacks.
	Data tagging side-channels by relays
	Destructive side-channels (internal)
	Destructive network probes (external)
	Timing-based watermarking attacks
	Traffic injection attacks

	Attacks unique to datagram designs
	Traffic-stream tagging (by relays and internet links)
	Traffic Fingerprinting of TCP-like systems
	Retransmit-based watermarking
	Congestion and flow control interference
	Non-malleable encryption designs only currently exist for in-order transports (or the return of data tagging attacks)
	The risks of success: lower latency strengthens timing attacks?

	Towards comparing attacks
	Open Questions
	Future work
	Acknowledgments
	Further reading

